PRODUCT INFORMATION
Swift, Accurate and Efficient Microarray Printer for Peptides, DNA and Cells.
SPOT synthesis technique utilizing cellulose supports, combined with Aurora’s liquid handling technology, has given birth to the VERSA™ series microarray printer (microarrayer). Aurora’s extensive expertise in life science robotics has seen an increased need for scientific personnel to seek out automated solutions for peptide synthesis and other types of microarrays. Aurora developed the VERSA™ series automated microarray spotter and modules such as the nano-pipettor head, which allows for simple distribution of reagents—this helps in conducting grams to milligrams of combinatorial chemistry using contact or non-contact spotting.
High-Throughput Reagent Spotting
Drug-Eluting Microarray
Peptide Synthesis
Tissue Microarray
CHIP Production
Cancer Research
Precision Medicine
DNA Microarray
Protein Microarray
Biomedical Imaging
VERSA™ for Cell
Single Channel
Small and Compact
40 nL – 100 µL Spotting Volume
0.05 mm Positioning Error
Optional UV/HEPA Enclosure
Compatible with all Slide Types
Optional Humidity Control
VERSA™ for Peptide
Single Channel
Increased Deck Area
40 nL – 100 µL Spotting Volume
0.05 mm Positional Error
Optional UV/HEPA Enclosure
Optional Sonicated Wash station
Optional Humidity Control
VERSA™ for DNA
10, 20 or 35 Channel
Simultaneous Peptide Spotting
Bulk Peptides Quickly Constructed
Heavily Customizable
Optional UV/HEPA Enclosure
Compatible with all Slide Types
Optional Humidity Control
DNA Microarray Spotter
The VERSA™ 1100 35-channel automated microarrayer is capable of spotting cDNA microarray assays by an automated, robotic-based, spot printing technique. The VERSA™ system accommodates a fixed pipetting pin setup, available in contact, or non-contact format, capable of dispensing nanoliter aliquots, down to 30 nL.
Automated Microarray Printing Method
Spotting volume area – 300 nL / spot, approximately 2 mm in diameter
Sample – nucleic acid
Microarray surface – nylon membrane; 3mm between spot centres, 1mm spacing along the perimeter
For DiagCor’s purpose, the assay is used to differentiate between diseases of the same genotype, on a nylon membrane microarray format.
The hybridization of the cDNA strands, labelled with a fluorescent dye, will illuminate with a lavender-based colour signal. The non-specific binding sequences can be easily washed with the ReagentDrop™, leaving the paired strands that have the strongest binding affinity. The fluorescence signal that remains on each “spot” correlates to the strength of the labelled target sequence that has effectively hybridized. Quantification of this step can be conducted on downstream instrumental analyzers, which enable scanning of the fluorescence signal, normalization, and data analysis.
Background & Application Areas
DNA microarray analysis identifies inflections in gene activity, that lead to small variations in DNA sequence, which are known as polymorphisms. Molecular analysis, targeted gene expression profiling, genetic disease detection, and non-invasive prenatal diagnosis are just some of the applications of DNA microarray analysis.
Furthermore, single nucleotide polymorphism (SNP) detection is a common and most frequent type of variation in the human genome. However, with the automated microarray printer, users can elucidate it. Applications include forensic analysis, disease prognosis, genotyping, oncology-based somatic mutation evaluations, and drug-target candidate identification.
The VERSA™ 110 automated microarrayer for peptide synthesis automates the process using FMOC-based chemistry (or Fmoc solid-phase synthesis). With easy-to-use software and accommodation for low-cost porous membrane materials, it is an effective and robust pipetting system.
Specifically, for peptide synthesis using the SPOT technique, the VERSA™ 110 is stable and allows for high-throughput printing, higher-density microarrays, and allows for pipetting amino acids and reagents as low as 40 nL.
The instrument is stable and robust, we have had zero breakdowns since it was installed many years ago. The VERSA™ SPOTTER would provide a more cost-efficient solution, with higher density, higher accuracy, and faster printing, all at a lower price. The minimum printing volume would be as low as 40 nL.
– User Testimony.
Background
Solid-phase peptide synthesis involves the linking of multiple amino acids via peptide bonds for the production of peptides. This process imitates the biological process of producing long peptides. In solid-phase peptide synthesis (SPPS), the peptide is ‘immobilized’ on a solid surface and can be retained during washing of liquid-phase reagents. Solid-phase peptide synthesis also allows the synthesis of natural peptides which are difficult to express in bacteria, the incorporation of unnatural amino acids, and peptide/protein backbone modification.
At the National Taiwan University, the VERSA™ system is used to conduct experiments for cell microarrays, printed onto a microscope slide surface. The cell microarray is used as a tool to elucidate cell signalling pathway regulation and the impact of drug molecule binding interactions.
Printing Method
Spotting volume area – 100 nL – 300 nL / spot, approximately 2 mm in diameter
Sample – cell solution (uniform, or different, printed onto 10×10 array format
Microarray surface – 15×15 mm microscope cover glass, immersed in culture medium
Once the cell solution is spotted on a microscope slide in a 10×10 array format, the corresponding drug molecules are printed onto the slide surface. After being cultured for a period of time, the slide can be observed under a microscope to examine cell morphology.
Independently Validated
Human germinal centres engage memory and naive B cells after influenza vaccination
View this publication to see how the VERSA™ 10 Microarray Spotter was used to study immune responses after influenza vaccination.
Facilitating tumor spheroid-based bioassays and in vitro blood vessel modeling via bioinspired self-formation microstructure devices
View this publication to see how the VERSA™ 10 Microarray Spotter was used in dispensing water droplets of specific volumes to study how surface tension guides aqueous molding.
Development of an influenza virus protein microarray to measure the humoral response to influenza virus infection in mallards
View this open-source publication to see how Influenza virus hemagglutinin (HA) protein was printed in microarrays on epoxysilane-coated glass slides using VERSA™ 110 Microarray Spotter.
A nanodroplet cell processing platform facilitating drug synergy evaluations for anti-cancer treatments
Learn more about how the VERSA™ 10 Microarray Spotter was used to develop a nanodroplet cell processing platform for anti-cancer drug synergy.